Establishing appropriate sample size for developing and validating a questionnaire in nursing research


instrument development
sample size
nursing research

How to Cite

Gunawan, J., Marzilli, C., & Aungsuroch, Y. (2021). Establishing appropriate sample size for developing and validating a questionnaire in nursing research . Belitung Nursing Journal, 7(5), 356-360.


The number thirty is often used as the sample size in multiple questionnaires and identified as appropriate for validation of nursing research. However, this is not the best tool or strategy for sample size selection for development and validation, and this often causes immediate rejections of manuscripts. This editorial aims to provide an overview of the appropriate sample size for questionnaire development and validation. The article is the amalgamation of technical literature and lessons learned from our experiences in developing, validating, or adapting a number of questionnaires.


Akins, R. B., Tolson, H., & Cole, B. R. (2005). Stability of response characteristics of a Delphi panel: Application of bootstrap data expansion. BMC Medical Research Methodology, 5(1), 1-12.

Aleamoni, L. M. (1976). The relation of sample size to the number of variables in using factor analysis techniques. Educational and Psychological Measurement, 36(4), 879-883.

Armstrong, T. S., Cohen, M. Z., Eriksen, L., & Cleeland, C. (2005). Content validity of self-report measurement instruments: An illustration from the development of the Brain Tumor Module of the MD Anderson Symptom Inventory. Oncology Nursing Forum, 32, 669-676.

Barrett, P. T., & Kline, P. (1981). The observation to variable ratio in factor analysis. Personality Study and Group Behavior, 1(1), 23-33.

Bentler, P. M., & Chou, C.-P. (1987). Practical issues in structural modeling. Sociological Methods & Research, 16(1), 78-117.

Boateng, G. O., Neilands, T. B., Frongillo, E. A., Melgar-Quiñonez, H. R., & Young, S. L. (2018). Best practices for developing and validating scales for health, social, and behavioral research: A primer. Frontiers in Public Health, 6, 149.

Brown, T. A. (2015). Confirmatory factor analysis for applied research (2nd ed.). New York: The Guilford Press.

Burns, N., & Grove, S. K. (2005). The practice of nursing research: Conduct, critique and utilization. United States: Elsevier/Saunders.

Cattell, R. (1978). The scientific use of factor analysis. New York: Plenum.

Clark, L. A., & Watson, D. (2016). Constructing validity: Basic issues in objective scale development. In A. E. Kazdin (Ed.), Methodological issues and strategies in clinical research (pp. 187-203). Washington, D.C: American Psychological Association.

Comrey, A. L. (1988). Factor-analytic methods of scale development in personality and clinical psychology. Journal of Consulting and Clinical Psychology, 56(5), 754-761.

Comrey, A. L., & Lee, H. B. (1992). A first course in factor analysis. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

DeVellis, R. F. (1991). Scale development: theory and applications. California: Sage publications.

Everitt, B. S. (1975). Multivariate analysis: The need for data, and other problems. The British Journal of Psychiatry, 126(3), 237-240.

Gorsuch, R. L. (1983). Factor analysis (2nd ed.). Hillsdale, NJ: Erlbaum.

Guadagnoli, E., & Velicer, W. F. (1988). Relation of sample size to the stability of component patterns. Psychological Bulletin, 103(2), 265-275.

Guilford, J. P. (1954). Psychometric methods (2nd ed.). New York: mcGraw-Hill.

Hair, J. F., Black, B., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis (7th ed.). London: Pearson.

Hatcher, L. (1994). A step-by-step approach to using the SAS® system for factor analysis and structural equation modeling. Cary, N.C: SAS Institutte, Inc.

Hutcheson, G., & N., S. (1999). The multivariate social scientist: Introductory statistics using generalized linear models. London: Sage Publication.

Jackson, D. L. (2003). Revisiting sample size and number of parameter estimates: Some support for the N: q hypothesis. Structural Equation Modeling, 10(1), 128-141.

Kline, P. (1994). An easy guide to factor analysis. New York: Routledge.

Kline, R. B. (2015). Principles and practice of structural equation modeling. New York: Guilford publications.

Knekta, E., Runyon, C., & Eddy, S. (2019). One size doesn't fit all: Using factor analysis to gather validity evidence when using surveys in your research. CBE life sciences education, 18(1), rm1-rm1.

Kyriazos, T. A. (2018). Applied psychometrics: Sample size and sample power considerations in factor analysis (EFA, CFA) and SEM in general. Psychology, 9(08), 2207.

Lavrakas, P. J. (2008). Questionnaire Encyclopedia of Survey Research Methods (Vol. 1-10). Thousand Oaks, California: Sage Publications, Inc.

Morse, J. M. (2000). Determining sample size. Qualitative Health Research, 10(1), 3-5.

Mundfrom, D. J., Shaw, D. G., & Ke, T. L. (2005). Minimum sample size recommendations for conducting factor analyses. International Journal of Testing, 5(2), 159-168.

Nunnally, J. C. (1978). Psychometric theory. New York: McGraw-Hill.

Rummel, R. J. (1988). Applied factor analysis. United States: Northwestern University Press.

Sousa, V. E. C., Matson, J., & Dunn Lopez, K. (2017). Questionnaire adapting: Little changes mean a lot. Western Journal of Nursing Research, 39(9), 1289-1300.

Sullivan, G. M. (2011). A primer on the validity of assessment instruments. Journal of Graduate Medical Education, 3, 119-120.

Watson, R., & Thompson, D. R. (2006). Use of factor analysis in Journal of Advanced Nursing: Literature review. Journal of Advanced Nursing, 55(3), 330-341.

Zamanzadeh, V., Ghahramanian, A., Rassouli, M., Abbaszadeh, A., Alavi-Majd, H., & Nikanfar, A.-R. (2015). Design and implementation content validity study: Development of an instrument for measuring patient-centered communication. Journal of Caring Sciences, 4(2), 165-178.

Copyright (c) 2021 Joko Gunawan, Colleen Marzilli, Yupin Aungsuroch
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Article Metrics

Abstract views: 254 | PDF views: 135


Download data is not yet available.